Partial proof of Graham Higman's conjecture related to coset diagrams

نویسندگان

  • A. Razaq Department of Mathematics, Govt. Post Graduate College Jauharabad, Pakistan.
  • Q. Mushtaq Vice Chancellor, The Islamia University of Bahawalpur, Pakistan.
چکیده مقاله:

Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree, there are finite number of such polynomials. In this paper, we consider a family Ϝ of fragments such that each fragment in Ϝ contains one vertex fixed byF_v [(〖xy〗^(-1) )^(s_1 ) (xy)^(s_2 ) (〖xy〗^(-1) )^(s_3 ),(xy)^(q_1 ) (〖xy〗^(-1) )^(q_2 ) (xy)^(q_3 ) ]where s₁,s₂,s₃,q₁,q₂,q₃∈ℤ⁺, and prove Higman's conjecture for the polynomials obtained from the fragments in Ϝ.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

partial proof of graham higman's conjecture related to coset diagrams

graham higman has defined coset diagrams for psl(2,ℤ). these diagrams are composed of fragments, and the fragments are further composed of two or more circuits. q. mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...

متن کامل

A Proof of the Melvin{morton Conjecture and Feynman Diagrams

The Melvin{Morton conjecture says how the Alexander{Conway knot invariant function can be read from the coloured Jones function. It has been proved by D. Bar-Natan and S. Garoufalidis. They reduced the conjecture to a statement about weight systems. The proof of the latter is the most diicult part of their paper. We give a new proof of the statement based on the Feynman diagram description of t...

متن کامل

A Schur Non-negativity Conjecture Related to Double-wiring Diagrams

We make an explicit combinatorial construction of the cluster algebra arising from a double wiring diagram. We also state a Schur non-negativity conjecture and prove it is true for small cases.

متن کامل

Cayley graphs and coset diagrams

Let G be a finite group, and X a subset of G. The Cayley graph of G with respect to X , written Cay(G,X) has two different definitions in the literature. The vertex set of this graph is the group G. In one definition, there is an arc from g to xg for all g ∈ G and x ∈ X ; in the other definition, for the same pairs (g,x), there is an arc from g to gx. Cayley graphs are generalised by coset grap...

متن کامل

On the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture

The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...

متن کامل

On a Diophantine Equation Related to a Conjecture of Erdös and Graham

A particular case of a conjecture of Erdös and Graham, which concerns the number of integer points on a family of quartic curves, is investigated. An absolute bound for the number of such integer points is obtained.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 42  شماره 2

صفحات  353- 369

تاریخ انتشار 2016-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023